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Abstract: A novel method of Bayesian learning with automatic relevance determination prior is presented that provides a powerful
approach to problems of classification based on data features, for example, classifying soil liquefaction potential based on soil and seismic
shaking parameters, automatically classifying the damage states of a structure after severe loading based on features of its dynamic
response, and real-time classification of earthquakes based on seismic signals. After introduction of the theory, the method is illustrated by
applying it to an earthquake record dataset from nine earthquakes to build an efficient real-time algorithm for near-source versus
far-source classification of incoming seismic ground motion signals. This classification is needed in the development of early warning
systems for large earthquakes. It is shown that the proposed methodology is promising since it provides a classifier with higher correct
classification rates and better generalization performance than a previous Bayesian learning method with a fixed prior distribution that was
applied to the same classification problem.
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Introduction

Classification is a subtopic of machine learning which can be
defined as “the act of taking in raw data and taking an action
based on the category of the data” �Duda et al. 2000�. By using a
given training dataset, a separating boundary is identified that
separates different-class data in the feature space, then the cat-
egory to which new data belong is decided by using that separat-
ing boundary.

This classification is performed in the following three phases:
1. Phase I �feature extraction phase�: this phase distills a small

number of features from a large set of data that are thought to
characterize each class of interest in the data;

2. Phase II �training phase�: this phase identifies a separating
boundary based on extracted features that are most relevant
to the data classification, usually using some form of regu-
larization; and

3. Phase III �prediction phase�: in this phase, a prediction is
made using the separating boundary from the previous phase
to decide to which class new data belong.

Bayesian methods for classification problems have the advan-
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tage that they make probabilistic predictions �rather than giving
only a possibly misleading yes/no answer� for the class that cor-
responds to a given feature vector �Bishop 2006�. These predic-
tions are based on a rigorous Bayesian learning procedure that
rests on the axioms of probability. The essential ingredients are a
set of predictive probability models involving a parameterized
separating boundary function and a probability model �the prior
distribution� over this set. The prior can be pragmatically chosen
by the user to regularize the ill-conditioned problem of identify-
ing a boundary that separates the classes in the feature vector
space. In the absence of such regularization, the training phase
will be usually lead to “over-fitting” of the data, so that generali-
zations beyond the training data in the prediction phase will per-
form poorly.

In this paper, the novel method of “Bayesian learning with
automatic relevance determination �ARD� prior” is presented and
illustrated for an interesting classification problem in earthquake
early warning systems �Yamada et al. 2007� because of its excep-
tional regularization ability �Mackay 1994; Oh and Beck 2006;
Tipping 2004�. The Bayesian approach presented is useful for
other problems of data-based classification in earthquake engi-
neering and structural health monitoring, such as liquefaction for
sandy soil sites based on soil properties and ground shaking in-
tensity, classifying damage states based on sensor data �Oh and
Beck 2006�, etc. In the application presented here, the Bayesian
learning method with ARD prior provides an algorithm for proba-
bilistic predictions of whether the seismic ground motion signal
that is transmitted from a seismic sensor network corresponds to
near-source or far-source ground motion with respect to the caus-
ative fault. This information is important for an early warning
system when it is automatically estimating the location and mag-
nitude of the earthquake in real time �Yamada et al. 2007�. Since
an earthquake is a sudden event that comes without much warn-
ing, there is increasing research interest in automated seismic

early warning systems that can take rapid actions to mitigate dam-
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ilized.
age and loss before the onset of the damaging ground shaking at
a facility �Allen and Kanamori 2003; Cua 2005; Grasso et al.
2007�. Seismic early warning is based on the principle that an
automated and reliable system may allow time for taking mitiga-
tion measures because the speed of the most damaging S-waves
�about 3.5 km /s� is slower than that of electrically transmitted
signals from the seismic network sensors �about 300,000 km /s�
that detect the onset of the event.

A recently developed method for an early warning system,
called the virtual seismologist �VS� method �Cua 2005�, can esti-
mate the location of the epicenter and the magnitude within a few
seconds after the detection of the P-waves near the causative
fault. This VS method, however, currently works for moderate
earthquakes of magnitude less than about 6.5 because it assumes
a point-source model for the rupture �Cua 2005�. To construct a
seismic early warning system dealing with larger earthquakes,
knowledge of the fault geometry is essential and an important
ingredient in establishing the extent of the rupturing fault is to be
able to estimate whether the station is close to the fault �near-
source� or at some distance �far-source� based on the waveform
data available at the given station �Yamada et al. 2007�.

The earthquake dataset and the extracted features are described
in the next section and then the training and predicting phase with
the Bayesian learning procedure is described. The results obtained
by the proposed method for near-source �NS� versus far-source
�FS� classification are presented and compared with those from a
recent related study �Yamada et al. 2007� with the conclusions
following at the end.

Feature Extraction for Training Data

We chose the dataset used previously by Yamada et al. �2007�. It
consists of 695 strong-motion records from nine earthquakes of
magnitude greater than 6.0: Imperial Valley �1979�, Loma Prieta
�1989�, Landers �1992�, Northridge �1994�, Hyogoken-Nanbu
�1995�, Izmit �1999�, Chi-Chi �1999�, Denali �2002� and
Niigataken-Chuetsu �2004�. Records are categorized as NS if the
corresponding station is less than 10 km from the fault rupture
and FS otherwise. Only stations with fault distances less than
200 km are included since otherwise the ground motion ampli-
tudes are small, resulting in a low signal-to-noise ratio. The pre-
cise number of NS and FS records for each earthquake is listed in
Table 1. For each baseline-corrected time history in the dataset,
the values of peak jerk, acceleration, velocity, and displacement

Table 1. Number of Near-Source and Far-Source Records in Earthquake

Earthquake Mw
a NS

Imperial Valley �1979� 6.5 14

Loma Prieta �1989� 6.9 8

Landers �1992� 7.3 1

Northridge �1994� 6.6 17

Hyogoken-Nanbu �1995� 6.9 4

Izmit �1999� 7.6 4

Chi-Chi �1999� 7.6 42

Denali �2002� 7.8 1

Niigataken-Chuetsu �2004� 6.6 9

Total 100
aMoment magnitude �Mw� is cited from Havard CMT solution.
bTo classify near-source and far-source station, listed fault models are ut
in the horizontal and vertical directions were extracted by taking
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numerical derivatives or integrals when necessary �Yamada et al.
2007�. We note that jerk is defined as the rate of acceleration
change and so it is computed as the derivative of acceleration
with respect to time. Motions with higher-frequency content such
as acceleration and jerk are more informative about the fault dis-
tance, since the amplitudes of these motions decay more rapidly
than those of lower-frequency motions such as displacements and
velocities �Hanks and McGuire 1981�. For the two horizontal
components of each record, the square root of the sum of squares
of the peak quantities were used. Since the peak amplitudes are
utilized for classification, the peak of the S-wave needs to have
arrived at a given station before predictions with the Bayesian
classifier can be made.

This data processing leads to the eight extracted features listed
in Table 2 for each of the 695 records. These features are com-
bined into a vector x� �R8

x� = �log10 Hj, log10 Zj, log10 Ha, log10 Za, log10 Hv, log10 Zv,

log10 Hd, log10 Zd�T

where H and Z=peak horizontal and vertical components and j, a,
v, and d=jerk, acceleration, velocity, and displacement, respec-
tively. The dataset of feature vectors is the same as that used in
Yamada et al. �2007� where a Bayesian classification scheme was
applied that used a fixed prior.

Bayesian Learning and Prediction

Let DN= ��x�n ,yn� :n=1, . . . ,N�= �X ,y�� denote the data with fea-
tures �predictor variables� x�n�Rm and labels yn� �0,1� �yn=0 for
far-source data, yn=1 for near-source data, N=695, and m=8 in
our application�.

et Used for Classification �Yamada et al. 2007�

FS Total Fault modelb

20 34 Hartzell and Heaton �1983�

39 47 Wald et al. �1991�

112 113 Wald and Heaton �1994�

138 155 Wald et al. �1996�

14 18 Wald �1996�

13 17 Sekiguchi and Iwata �2002�

172 214 Ji et al. �2003�

29 30 Tsuboi et al. �2003�

58 67 Honda et al. �2005�

595 695

Table 2. Eight Extracted Features �Yamada et al. 2007�

Ground motion feature Unit

Horizontal peak ground jerk �Hj� �cm /s3�
Vertical peak ground jerk �Zj� �cm /s3�
Horizontal peak ground acceleration �Ha� �cm /s2�
Vertical peak ground acceleration �Za� �cm /s2�
Horizontal peak ground velocity �Hv� �cm/s�

Vertical peak ground velocity �Zv� �cm/s�

Horizontal peak ground displacement �Hd� �cm�

Vertical peak ground displacement �Zd� �cm�
Datas
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Suppose that the function characterizing the separating
boundary between the two classes is taken as a linear combi-
nation of features x� = �x1 , . . . ,xm�T with unknown coefficients
�� = ��0 ,�1 , . . . ,�m�T�Rm+1

f�x� ��� � = �
j=1

m

� jxj + �0 �1�

The separating boundary function f�x� ��� � is also called the �linear�
discriminant function. We note in passing that the method pre-
sented here also works if the xj in Eq. �1� are replaced by nonlin-
ear functions gj�x��. For a known parameter vector �� , the
separating boundary between the different classes �NS and FS in
our application� is defined as f�x� ��� �=0 and probabilistic predic-
tions of the class label y� �0,1� corresponding to extracted fea-
tures x� will be based on the probability model

P�y�x� ,�� � = 	��f�x� ��� �� , if y = 1

1 − ��f�x� ��� �� , if y = 0



= ��f�x� ��� ��y�1 − ��f�x� ��� ���1−y �2�

where ��·�� �0,1�=monotonically increasing sigmoid func-
tion on R defined by ��x�=1 / �1+e−x� so limx→���x�=1,
limx→−���x�=0, and ��x�+��−x�=1 �see Fig. 1�. Thus, when
f�x� ��� � is large and positive, the probability is near 1 that x� corre-
sponds to an instance of the y=1 class, while when f�x� ��� � is
negative with large magnitude, x� corresponds to an instance of the
y=0 class with probability near 1. Note that the boundary
f�x� ��� �=0 corresponds to a probability of 0.5 for both classes and
it is invariant to a scaling of f; however, this scaling is important
because it controls how rapidly the probability of a class ap-
proaches its asymptotic values of 0 and 1 as the feature vector x� is
moved away from the boundary.

Bayesian Learning

Since Eq. �1� is just a model for the separating boundary, there are
no true values of �� to be “estimated” but we can learn about how
plausible its various values are by Bayesian updating using the

Fig. 1. Shape of sigmoid function
data DN.
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From Bayes’ theorem

p��� �DN,�� � =
P�DN��� �p��� ��� �

P�DN��� �
�3�

where p��� �DN ,�� �, P�DN ��� �, p��� ��� � and P�DN ��� �=posterior,
likelihood, prior, and evidence, respectively. The hyperparameters
�� define the ARD prior as explained shortly.

The likelihood P�DN ��� � measures how well the predictive
probability model defined by �� predicts the actual data

P�DN��� � = �
n=1

N

P�yn�x�n,�� � = �
n=1

N

��f�x�n��� ��yn�1 − ��f�x�n��� ���1−yn

�4�

The prior p��� ��� � provides a means of regularizing the learning
process. A novel feature of this work is the introduction of the
ARD prior �Mackay 1994; Tipping 2004�, which is simply a
Gaussian probability density function �PDF� with mean 0� and
covariance matrix A��� �−1=diag��0

−1 ,�1
−1 , . . . ,�m

−1�

p��� ��� � = �2��−�m+1�/2�A��� ��1/2 exp�− 1
2��TA��� ���� �5�

The previous study by Yamada et al. �2007� adopted a fixed and
noninformative prior that assigned the same value for all �i, i.e.,
�i=100−2, i=0, . . . ,m, while the ARD prior uses an independent
�i for each parameter �i and these independent �is are estimated
during the learning process. The ARD prior combined with Baye-
sian model class selection plays an important role in selecting the
significant features by utilizing only a small number of relevant
features and automatically pruning the remaining features, instead
of considering all possible model classes, one after another, as in
Yamada et al. �2007�.

The hyperparameter �� �R+
m+1 can be viewed as defining a

model class M��� � consisting of the set of predictive probability
models �P�y �x� ,�� � :�� �Rm+1� along with the above prior PDF
p��� ��� � over this set. We will then use model class selection based
on the evidence P�DN ��� � for M��� � to select the most probable
model class M��̂� � based on data DN �Beck and Yuen 2004;
Mackay 1992�. It was shown by Tipping �2004� that the ARD
prior suppresses ill-conditioning by discouraging strong correla-
tions between terms in Eq. �1� that are not supported by the data;
in fact, it may happen that some �̂ j→� during the optimization to
find M��̂� � which completely suppresses the corresponding terms
in Eq. �1� �i.e., � j =0 since for M��̂� �, � j has a Gaussian prior with
zero mean and vanishing variance�.

The next step is to construct a Gaussian approximation of the
posterior p��� �DN ,�� � using Laplace’s asymptotic approximation
�Beck and Katafygiotis 1998; Mackay 1992�. This is achieved by
making a quadratic approximation of the log-posterior around the

most probable value, �̂� , given by maximization of the posterior

PDF. This produces a Gaussian distribution with mean �̂� and co-

variance matrix �̂ which is the inverse of the negative of the
Hessian matrix of the log-posterior.

The detailed procedure for the Laplace approximation is as
follows �Oh 2007�:
1. For a given value of �� , the log-posterior from Eqs. �3�–�5� is
�ignoring irrelevant additive terms that depend only on �� �:
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ln�p��� �DN,�� �� = �
n=1

N

ln�P�yn��� ,x�n�� + ln�p��� ��� ��

= �
n=1

N

�yn · ln �n��� � + �1 − yn� · ln�1 − �n��� ���

−
1

2
��TA��� ��� �6�

where A��� �=diag��0 ,�1 , . . . ,�N� and �n��� �=��f�x�n ��� ��.
By using an iterative procedure based on a second-order
Newton method �or any other optimization method�, the
most probable values �̂� ��� � are estimated by maximizing
ln�p��� �DN ,�� ��.

2. The inverse covariance matrix is �̂−1��� �=−������ ln p

��� �DN ,�� � evaluated at �̂� ��� � and the resulting Gaussian ap-
proximation of the posterior distribution is

p��� �DN,�� � � �2��−�m+1�/2��̂�−1/2 exp�− 1
2 ��� − �̂� �T�̂−1��� − �̂� ��

�7�

where �̂��� �= ��TB�+A�−1�R�m+1���m+1�=covariance ma-

trix for �� , given �� ; �̂� ��� �= �̂�TBŷ���� �=most probable value

of parameter �� , given �� ; ŷ���� �=��̂� +B−1�y� −�� ���̂� ���RN;

B��� �=diag��1 , . . . ,�N��RN�N with �n��� �=�n��̂� ��1
−�n��̂� ��; �= �	�1 , . . . ,	�N�T�RN��m+1�; and 	�n=	��x�n�
= �1,x�n

T�T�Rm+1.
The posterior in Eq. �7� contains all that is known about the

parameters �� based on the assumed model class M��� � and the
data DN.

Bayesian Model Class Selection When Using ARD
Prior

In the next step, Bayesian model class selection is used to select
the most probable hyperparameter �̂� �R+

m+1. The most probable
model class M��̂� � based on data DN is given by finding �̂� that
maximizes the probability p��� �DN�d�� 
 P�DN ��� �p��� �d�� for
model class M��� �. If a uniform prior on �� is considered, then it
is equivalent to the maximization of the evidence P�DN ��� �,
which is equivalent to the maximization of ln P�DN ��� � given by

L��� � = ln P�DN��� �

= ln

−�

�

P�DN,�� ��� �d��

= ln

−�

�

P�DN��� �p��� ��� �d��

� −
1

2
�N ln 2� + ln�B−1 + �A−1�T� + y�

T�B−1 + �A−1�T�−1y��

= −
1

2
�N ln 2� + ln�C� + y�

TC−1y�� �8�

where Laplace’s asymptotic approximation is used on the integral

in Eq. �8� expanding about �̂� ��� �, which gives the maximum of the
integrand, C=B−1+�A−1�T and A��� �, B��� �, and � are defined
as before �see Faul and Tipping 2002�.

The maximization of L��� � is performed using an iterative pro-
cedure as follows: L��� � can be rewritten by isolating the terms

containing �i
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L��� � = −
1

2
�N ln 2� + ln�C−i� + y�

TC−i
−1y� − ln �i + ln��i + 	� i

TC−i
−1	� i�

−
�	� i

TC−i
−1y��2

�i + 	� i
TC−i

−1	� i
�

= L��−i� +
1

2
�ln �i − ln��i + 	� i

TC−i
−1	� i� +

�	� i
TC−i

−1y��2

�i + 	� i
TC−i

−1	� i
� �9�

where C−i=covariance matrix C with the components of 	� i re-
moved and therefore C−i does not depend on �i, only on the other
components of �� . By setting the derivative of Eq. �9� with respect
to �i to zero, the value that maximizes L��� � is found to be

�̂i = � � , if Qi
2 � Si

Si
2

Qi
2 − Si

, if Qi
2 � Si � �10�

where Qi=	� i
TC−i

−1y� and Si=	� i
TC−i

−1	� i �Faul and Tipping 2002�.
Starting with an initial estimate of �̂� , �̂i is iteratively calcu-

lated from Eq. �10� for each i=0, . . . ,m, always utilizing the latest
estimates for the � j to evaluate C��� �, and this procedure is con-
tinued until it converges to �̂� . In this process, some of the �i may
become infinite, resulting in a pruning of the corresponding com-

ponents of 	� i since �̂i→�⇒ �̂i→0 and �̂ii→0, so �i→0 from
Eq. �7�. Thus, only the components that have �̂i finite are used in
determining the separating boundary, so that the maximization of
the evidence with respect to �� automatically determines which
terms in f�x� ��� � in Eq. �1� are relevant for classification.

Prediction Phase

Based on the results from the previous subsection, prediction is
performed as follows. Let ỹ denote the unknown label for new
feature, x̃� , then the desired probability is given by

P�ỹ�x̃� ,DN� =
 P�ỹ,�� ,�� �x̃� ,DN�d�� d��

=
 P�ỹ�x̃� ,DN,�� �p��� �DN,�� �p��� �DN�d�� d��

Using Laplace’s approximation twice

P�ỹ�x̃� ,DN� � 
 P�ỹ�x̃� ,�� �p��� �DN,�̂� �d�� � P�ỹ�x̃� , �̂� ��̂� �� �11�

where �̂� , �̂� =most probable values for �� , �� based on data DN

determined as in Eqs. �7� and �10�, respectively, and P�ỹ � x̃� , �̂� ��̂� ��
is given by Eq. �2�. Notice that the predictive probability in

Eq. �11� is controlled by the optimal boundary function f�x̃� � �̂� ��̂� ��
given by Eq. �1�.

Near-Source versus Far-Source Classification
Results

Function for Separating Boundary

In a previous study that used a fixed prior �instead of the ARD
prior�, the three-parameter model given in Eq. �12� was found to
give the optimal separating boundary function based on the earth-

quake dataset described in Table 1 �Yamada et al. 2007�
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training
M1: f�x� ��̂� � = 6.046 log10 Za + 7.885 log10 Hv − 27.091 �12�

This corresponds to a model class, denoted as M1 here, that was
selected by finding the most probable model class among 255
�=28−1� models consisting of all possible combinations of the
eight features in Table 2 and using a fixed Gaussian prior p��� �M�
for each model class M. The misclassification rates for M1 are
22.00 and 2.02% for the NS and FS data, respectively.

Since M1 was estimated by using a constant standard devia-
tion of 100 �=�i

−1/2� for the Gaussian prior for each �i, the pro-
posed method of Bayesian learning with the ARD prior is first
applied to a model class with the same features as in Eq. �12� but
using an independent variance �i for each �i �i=0,1 ,2� in the
prior. The procedure described in the previous section is applied
to the earthquake dataset and the optimal boundary function for
this model class M2 is given in Eq. �13�: the corresponding mis-
classification rates are 23.00 and 2.02% for NS and FS data, re-
spectively. The corresponding prior variances are given later.

M2: f�x� ��̂� � = 6.129 log10 Za + 7.484 log10 Hv − 26.588 �13�

Based on the misclassification rates, it could be concluded that the
difference in performance between the two three-parameter mod-
els �Eqs. �12� and �13�� is negligible. However, it is shown later
that M1 is much less probable than M2 based on the data.

Table 3. Coefficients for Optimal Separating Boundary Function for Eac

M Ni
a 1 Hj Zj

M1 3 −27.091 —b —

M2 3 −26.588 — —

M3 5 −30.982 2.055 0c

aNi=number of parameters used for each model.
b— means corresponding parameters are not considered for each model.
c0 means the corresponding parameters are automatically pruned during

Table 4. Prior Covariance Matrix for Each Model Class

M Prior covariance matrix

M1 diaga �1002 ,1002 ,1002�
M2 diag �26.762 ,6.192 ,7.572�
M3 diag �31.232 ,2.252 ,5.482 ,4.972 ,2.202�
aDiag means diagonal matrix with the diagonal elements following.

Table 5. Classification Results for Earthquake Database Using Three Di

Actual class Near-

M1 Near-source 78 �78

Far-source 12 �2

Total predictions 9

M2 Near-source 77 �77

Far-source 12 �2

Total predictions 8

M3 Near-source 82 �82

Far-source 11 (1
Total predictions 9
JOURNAL
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Finally, the proposed methodology of Bayesian learning with
the ARD prior is applied to a model containing all eight features
in Table 2. It produces a five-parameter model class M3 whose
optimal separating boundary function is

M3: f�x� ��̂� � = 2.055 log10 Hj + 5.350 log10 Za + 4.630 log10 Hv

+ 1.972 log10 Hd − 30.982 �14�

Note that for M2, the Bayesian learning algorithm is restricted to
have no more than log10 Za and log10 Hv, the features that are used
for M1, while M3 selects four features from a potential of eight
by automatically pruning the other features. The corresponding
misclassification rates for M3 are 18.00 and 1.85% for NS and
FS data, respectively, significantly smaller than those for M1 and
M2.

The coefficients for the optimal separating boundaries, the
prior variances, and the corresponding classification results for
each model class are summarized in Tables 3–5, respectively.
The performance of these three model classes is next examined
by leave-one-out cross-validation and then by calculating their
evidence based on the earthquake data DN.

Leave-One-Out Cross-Validation

Table 5 shows the classification results for models M1, M2,
and M3 using all 695 records in the earthquake dataset for both
training and predicting the labels. As shown in this table, M3

outperforms the two other models on the basis of smaller misclas-
sification rates. For another check on the performance of these
three models for predicting the class, leave-one-out cross-
validation �LOOCV� is performed.

LOOCV, as the name implies, takes one data point at a time
from the whole dataset and then a prediction is made based on the
optimal separating boundary determined from the remaining data.
This procedure is repeated until each data point has been com-

el Class

Za Hv Zv Hd Zd

6.046 7.885 — — —

6.129 7.484 — — —

5.350 4.630 0 1.972 0

.

Model Classes

Predicted class
Total

observationsFar-source

22 �22.00%� 100

583 �97.98%� 595

605 695

23 �23.00%� 100

583 �97.98%� 595

606 695

18 (18.00%) 100

584 �98.15%� 595

602 695
h Mod

Ha

—

—

0

fferent

source

.00%�

.02%�

0

.00%�

.02%�

9

.00%�

.85%)
3
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pared with the corresponding prediction �taken here as the class
with the higher predictive probability, that is, the class with prob-
ability exceeding 0.5�. Actually, LOOCV is equivalent to K-fold
cross-validation where K �=695 here� is equal to the number of
data in the original dataset. Note that LOOCV is commonly used
in Tikhonov regularization to select the regularizing parameter,
but this is handled automatically in the Bayesian approach pre-
sented here.

The results of LOOCV for each model class are presented in
Table 6. Based on the misclassification rate, which is the ratio of
the number of misclassified data to the total number of data, clas-
sification model M3 shows a better performance.

Posterior Probability of Each Model Class

In this section the posterior probability of each model class in the
set M= �M1 ,M2 ,M3� is computed based on the dataset DN of
695 records by using Bayes’ theorem

P�Mi�DN,M� =
P�DN�Mi�P�Mi�M�

P�DN�M�

=
P�DN�Mi�P�Mi�M�

�i=1
I P�DN�Mi�P�Mi�M�

�15�

where P�DN �Mi�=evidence for Mi; P�Mi �M�=prior reflecting
the initial choice of the probability of each model class in set M,
and the denominator P�DN �M�=normalizing constant. Assigning
equal prior probability to each model class, the posterior probabil-
ity of each model class is proportional to its evidence

P�Mi�DN,M� 
 P�DN�Mi� �16�

Using the theorem of total probability, the evidence is calculated
from

P�DN�Mi� =
 P�DN��� i,Mi�p��� i�Mi�d�� i �17�

This is the average value of the likelihood weighted by the cor-
responding prior probability over all possible values of the param-
eters �� i. For a large number of data, an asymptotic approximation
can be applied to the integral in Eq. �17� �Beck and Yuen 2004�

P�DN�Mi� � P�DN��̂� i,Mi�
�2��Ni/2p��̂� i�Mi�

��H��̂� i��
�18�

where �̂� i=most probable value of �� i; and Ni=number of param-
eters in model class Mi. The first factor in Eq. �18� is the likeli-
hood and the remaining factors together are the Ockham factor.
This Ockham factor penalizes more complex models. The
Hessian matrix H��̂� i� in Eq. �18� is given by the same expression

as for �̂−1��� � after Eq. �7� where each variance �i
−1 is given in

Table 4. The posterior probabilities for each of M1, M2, and M3

are presented in Table 7, which shows that M3 is much more

Table 6. Misclassification Rates Based on Leave-One-Out Cross-
Validation

Model Prediction error

M1 36 /695 �5.18%�

M2 37 /695 �5.32%�

M3 31 Õ695 (4.46%)
probable than M1 and M2 based on the dataset DN.
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There is a refined information-theoretic interpretation �Beck
and Yuen 2004; Muto and Beck 2008� of the log evidence that
shows that it consists of the difference between a datafit term �the
posterior mean of the log likelihood function for the model class�
and a relative entropy term �Shannon 1948� which quantifies the
amount of information extracted from the data by the model class.
It is the latter term that prevents over-fitting to the data and which
leads to an automatic principle of model parsimony �Beck and
Yuen 2004� when Bayesian updating is performed over a set of
model classes, as done here. This information-theoretic interpre-
tation is evident from the asymptotic approximation Eq. �18� for
large N which shows that the log evidence is approximated by the
sum of the log likelihood of the most probable model in the
model class and the log Ockham factor, which is an asymptotic
approximation for the negative of the relative entropy. This is
how it was originally discovered �Beck and Yuen 2004� but more
recently it has been proven for the general case �Muto and Beck
2008�.

Effect of Prior

As we stated, the likelihood in Eq. �18� calculated for a more
complex model is usually larger than that for a simpler one,
since a more complex model gives a better fit to the data �e.g., see
Table 7�. Therefore, if a model is selected that maximizes the
likelihood alone, it tends to prefer the more complex model and
may lead to an over-fitting problem. In the Bayesian learning
method, this problem is inherently avoided by employing a prior
distribution where the standard deviation of the prior controls the
trade-off between the datafit error and model complexity �Bishop
2006�. This trade-off occurs because the posterior probability of a
model class depends on the evidence for the model class, which
can be expressed as the product of a datafit factor and an Ockham
factor, as explained in the previous subsection.

It is interesting that in the application here M1 is a “simpler”
model than M3 �it has fewer parameters� and yet Table 7 shows
that its Ockham factor is much smaller than that of M3, so the
“simpler” model is penalized more than the more complex one.
This is a precaution that one cannot simply count the number of
uncertain parameters Ni in a model class Mi to judge its com-
plexity. For the same reason, one must be cautious in using simple
model selection criteria such as Akaike’s information criterion
�Akaike 1974� and Bayesian information criterion �Schwarz
1978�, since they replace the Ockham factor in Eq. �18� with
exp�−Ni� and exp�−1 /2Ni ln N�, respectively.

The reason for the lower Ockham factor for M1 is that it has
much larger prior standard deviations than M3, so the change in
entropy from the very broad prior PDF of M1 to its narrow pos-
terior PDF is very large, and as a consequence the relative entropy

Table 7. Posterior Probability Calculation for Bayesian Model Class
Selection

M
In

Ockhama
In

likelihooda
In

evidencea Probabilityb

M1 −15 −81 −96 0.00

M2 −10 −79 −89 0.11

M3 −12 −75 −87 0.89
aThese values are natural logarithms of the Ockham factor, likelihood,
and evidence, respectively.
bProbability is calculated from the evidence on the basis that the Mi

�i=1,2 ,3� are equally probable a priori.
term in the information-theoretic interpretation mentioned in the
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previous subsection is larger for M1 than for M3. This interpre-
tation shows that the correct measure of “complexity” for a model
class is the amount of information that it extracts from the data, so
in this sense, M1 is actually more complex than M3.

Concluding Remarks

A novel method of Bayesian learning with the ARD prior is pre-
sented and applied to classify earthquake ground motion data into
NS and FS. The extracted features correspond to the log10 values
of peak jerk, acceleration, velocity, and displacement in the hori-
zontal and vertical directions and these are used with Bayesian
learning to establish a separating boundary in the feature space.
The ARD prior plays an important role by promoting sparsity
when selecting the important features �i.e., by utilizing only a
small number of relevant features after automatically pruning the
remaining features�.

The discussion in the previous subsection and the results pre-
sented for the NS/FS classification problem demonstrate that
broad prior PDFs should be used with caution when defining a
model class. An important advantage of using the ARD prior is
that model class selection automatically chooses an appropriate
prior that does not overly penalize complexity; it provides a bal-
ance between the datafit of the model class and its complexity in
terms of the amount of information that it extracts from the data.

The selected most probable separating boundary for classifica-
tion of seismic signals into NS and FS is

f�x� ��̂� � = 2.055 log10 Hj + 5.350 log10 Za + 4.630 log10 Hv

+ 1.972 log10 Hd − 30.982 �19�

where Hj, Za, Hv, and Hd=horizontal jerk, vertical acceleration,
and horizontal velocity and displacement, respectively, of
the ground motion record. Based on Eq. �19�, the probability
for new data with features x̃� to be classified as NS �ỹ=1� or FS
�ỹ=0� is

P�ỹ = 1�x̃� , �̂� � =
1

1 + exp�− f�x̃� ��̂� ��
�20�

P�ỹ = 0�x̃� , �̂� � = 1 − P�ỹ = 1�x̃� , �̂� � �21�

The proposed method is readily applied to real-time analysis
of recorded seismic ground motions for NS and FS classifica-
tion since the only calculations involved are those implied by
Eqs. �19�–�21�.

In view of the results so far achieved, it can be concluded that
it is beneficial to use the proposed Bayesian learning with the
ARD prior because it leads to:
1. Higher correct classification rates �equivalent to a lower

misclassification rate� �see Table 5�;
2. Better generalization performance as demonstrated by the

leave-one-out cross-validation results �see Table 6�; and
3. The most probable model class based on the calculated pos-

terior probability �see Table 7�.
Additional studies are underway in performance-based earth-

quake engineering in order to apply the method to develop
component fragility functions for multiple engineering demand

parameters and multiple damage states.

JOURNAL

Downloaded 02 Dec 2008 to 131.215.127.173. Redistribution subject to
References

Akaike, H. �1974�. “A new look at the statistical identification model.”
IEEE Trans. Autom. Control, 19, 716–723.

Allen, R. M., and Kanamori, H. �2003�. “The potential for earthquake
early warning in Southern California.” Science, 300, 786–789.

Beck, J. L., and Katafygiotis, L. S. �1998�. “Updating models and their
uncertainties. I: Bayesian statistical framework.” J. Eng. Mech.,
124�4�, 455–461.

Beck, J. L., and Yuen, K. V. �2004�. “Model selection using response
measurements: Bayesian probabilistic approach.” J. Eng. Mech.,
130�2�, 192–203.

Bishop, C. M. �2006�. Pattern recognition and machine learning,
Springer, New York.

Cua, G. B. �2005�. “Creating the virtual seismologist: Developments in
ground motion characterization and seismic early warning.” Ph.D.
thesis, California Institute of Technology, Pasadena, Calif.

Duda, R. O., Hart, P. E., and Stork, D. G. �2000�. Pattern classification,
Wiley-Interscience, New York.

Faul, A. C., and Tipping, M. E. �2002�. “Analysis of sparse Bayesian
learning.” Adv. Neural Inf. Process. Syst., 14, 383–389.

Grasso, V. F., Beck, J. L., and Manfredi, G. �2007�. “Automated deci-
sion procedure for earthquake early warning.” Eng. Struct., 29,
3455–3463.

Hanks, T. C., and McGuire, R. K. �1981�. “The character of high-
frequency strong ground motion.” Bull. Seismol. Soc. Am., 71�6�,
2071–2095.

Hartzell, S., and Heaton, T. �1983�. “Inversion of strong ground motion
and teleseismic waveform data for the fault rupture history of the
1979 Imperial Valley, California earthquake.” Bull. Seismol. Soc. Am.,
73, 1553–1583.

Honda, R., Aoi, S., Morikawa, N., Sekiguchi, H., Kunugi, T., and
Fugiwara, H. �2005�. “Ground motion and rupture process of the 2004
mid-Niigata prefecture earthquake obtained from strong motion data
of K-NET and KiK-net.” Earth, Planets Space, 57, 527–532.

Ji, C., Helmberger, D. V., Wald, D. J., and Ma, K. F. �2003�. “Slip history
and dynamic implications of the 1999 Chi-Chi, Taiwan, earthquake.”
J. Geophys. Res., 108�B9�, 2412.

Mackay, D. J. C. �1992�. “The evidence framework applied to classifica-
tion networks.” Neural Comput., 4, 720–736.

Mackay, D. J. C. �1994�. “Bayesian non-linear modelling for the predic-
tion competition.” ASHRAE Trans., 100�2�, 1053–1062.

Muto, M., and Beck, J. L. �2008�. “Bayesian updating and model class
selection for hysteretic structural models using stochastic simulation.”
J. Vib. Control, 14, 7–34.

Oh, C. K. �2007�. “Bayesian learning for earthquake engineering appli-
cations and structural health monitoring.” Ph.D. thesis, California In-
stitute of Technology, Pasadena, Calif.

Oh, C. K., and Beck, J. L. �2006�. “Sparse Bayesian learning for struc-
tural health monitoring.” Proc., 4th World Conf. on Structural Control
and Monitoring, San Diego, Dept. of Civil Engineering, Univ. of
Southern California, Los Angeles.

Schwarz, G. �1978�. “Estimating the dimension of a model.” Ann. Stat.,
6�2�, 461–464.

Sekiguchi, H., and Iwata, T. �2002�. “Rupture process of the 1999
Kocaeli, Turkey, earthquake estimated from strong-motion wave
forms.” Bull. Seismol. Soc. Am., 92, 300–311.

Shannon, C. E. �1948�. “A mathematical theory of communication.” Bell
Syst. Tech. J., 27, 379–423 and 623–656.

Tipping, M. E. �2004�. “Bayesian inference: An introduction of principles
and practice in machine learning.” Advanced lectures on machine
Learning, Springer, New York, 41–62.

Tsuboi, S., Komatitsch, D., Ji, C., and Tromp, J. �2003�. “Broadband
modeling of the 2002 Denali fault earthquake on the earth simulator.”
Phys. Earth Planet. Inter., 139, 305–312.

Wald, D. J. �1996�. “Slip history of the 1995 Kobe, Japan, earthquake
determined from strong motion, teleseismic, and geodetic data.”

J. Phys. Earth, 44, 489–503.

OF ENGINEERING MECHANICS © ASCE / DECEMBER 2008 / 1019

 ASCE license or copyright; see http://pubs.asce.org/copyright



Wald, D. J., and Heaton, T. �1994�. “Spatial and temporal distribution of
slip for the 1992 Landers, California earthquake.” Bull. Seismol. Soc.
Am., 84, 668–691.

Wald, D. J., Heaton, T., and Helmberger, D. V. �1991�. “Rupture model
of the 1989 Loma Prieta earthquake from the inversion of strong
motion and broadband teleseismic data.” Bull. Seismol. Soc. Am., 81,
1540–1572.
1020 / JOURNAL OF ENGINEERING MECHANICS © ASCE / DECEMBER 2

Downloaded 02 Dec 2008 to 131.215.127.173. Redistribution subject to
Wald, D. J., Heaton, T., and Hudnut, K. W. �1996�. “A dislocation model
of the 1994 Northridge, California earthquake determined from
strong-motion, GPS, and leveling-line data.” Bull. Seismol. Soc. Am.,
86, 49–70.

Yamada, M., Heaton, T., and Beck, J. L. �2007�. “Real-time estimation of
fault rupture extent using near-source versus far-source classification.”
Bull. Seismol. Soc. Am., 97, 1890–1910.
008

 ASCE license or copyright; see http://pubs.asce.org/copyright


